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ABSTRACT

A theory is formulated for the bending deformation of a
cylindrical, pressurized fiber shell, including the effects of
fiber slippage. This type of structure is representative for
pressure constraint components of space suits.

Special consideration is given to the filament-wound and
linked-fiber tube in the postslip phase of bending, although
any type of knots or fixed fiber nodes are permitted in the
preslip phase. 1Inextensible fibers are assumed throughout.
Analytical formulas are derived for the bending characteristics,
including bending stiffness, in the range of small deformations,
and numerical results are obtained for large deformations. The
idealized frictionless-fiber tube is shown to be unstable in
bending. For the friction-stabilized tube constructed from pairs
of left-running and right-running fibers, the effect of the
variable-mesh parallelogram in the preslip phase is to produce
a wide linear range followed by a relatively flat moment character-
istic for large bending angles. The effect of fiber slippage is
to produce a rapid reduction of the bending moment required for
deformation with ultimate destabilization as the bending angle
increases.
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INTRODUCTION

Deformable fibermesh structures are required in the pres-
sure constraints of "soft" space suit components. This report
presents the analysis of a special type of pressurized fiber-
mesh structure. The undeformed configuration is assumed to be
a circular cylinder; the deformation caused by bending moment
results in a deformed state corresponding to a segment of a
torus. Since large deformations are considered, the analysis
allows for noncircular cross section. To permit the analytical
simplification of axial symmetry, end constraints are assumed
that allow plane sections, initially perpendicular to the axis
of the cylinder, to remain plane under bending deformation.
However, the section may rotate through large angles. This
assumption is not expected to be valid near the ends for
realistic end conditions, but should be a good approximation over
the main part of the structure.

The problem is formulated by analyzing a family of toroids,
segments of which represent a cylindrical fiber tube deformed by
bending moments. The analysis is based on the fiber-equilibrium
model used previously (Ref. 1). Basically, this model corresponds
to a pair of overlying monotropic membranes in which the stress
resultants come about solely from the tension-loaded inextensible
fibers. 1In Reference 1 this model was applied to the case of
frictionless noninteracting fibers; in the present case, we
include the effect of interfiber friction arising from the
tendency of the fibers to slide over one another during bending.
All the geometric properties of the structure are made available
as a result of this analysis. The various members of the family
of toroids considered then represent the different stages of
deformation of some original cylinder. The particular sequence
of toroidal segments corresponding to a given initial cylindrical
slip-net are identified by use of the following constraints:

1) Filament length - the length of fiber in one complete
loop wound about the cylinder remains invariant under
deformation.

2) Number of fibers - the number of fibers crossing a
generator of the cylinder in a distance corresponding
to one fiber loop is invariant under deformation.




3) Closed-loop fiber curves - the curvature of the cross-
sectional curve of the toroids must be finite everywhere,
since the filamentary shell carries the entire structural
load, consisting of end-moment and internal pressure.

4) Pressure-volume relation ~ the pressurizing gas (or liquid)
is subject to a thermodynamic equation of state. Nor-

mally, the adiabatic relation (pVY = constant) is appro-
priate (p = pressure, V = volume). For a very slow
process, the isothermal law (pV = constant) is the
correct equilibrium condition. Alternatively, the

tube may be connected to a large reservoir, in which
case the isobaric relation (p = constant) is applicable.

Applying these constraints to the solution resulting from the
fiber-equilibrium analysis, a one-parameter family of toroids
is obtained, corresponding to the various deformed states,
under bending, of the original cylindrical fiber shell.

In the following analysis, two distinct states of bending
are distinguished: (a) preslip deformation and (b) postslip
deformation. The distinction is that the preslip state of
bending is characterized by such large friction (or small
bending moment) that the overlapping fibers cannot slide. The
elemental lengths of the two-fiber mesh pattern then remain
invariant, the deformation arising through "shear" of the
elemental fiber pattern as a kinematic linkage. On the other
hand, a three-fiber mesh constitutes a structure, and deformation
results only from extension of the fibers. The postslip state
of bending is characterized by the fibers sliding over each
other with constant sliding friction; the elemental lengths
of the fiber pattern are no longer invariant.* By choosing
distinct values of starting friction and sliding friction, a
hysteresis pattern of the deformation history can be obtained.

One application of the theory developed here is to the
"slip-net" structure, invented by A. C. Kyser. The slip-net
is a filamentary pressure vessel constructed in such a way that
the load-carrying fibers are free to slip over one another with

*This model has the obvious analogy of perfectly plastic flow
(Prager and Hodge, Ref. 2)-



small friction, thus permitting large bending deformations with
very low stiffness and restoring moment. Discussion and some
applications of these structures are given in Reference 3.



LIST OF SYMBOLS

radius of three-fiber tube

coefficient of the jth—order term in series development
tube length

constant membrane force of three-fiber tube
= sinBl

tube diameter

strain energy

friction coefficient

friction force per unit fiber length
interfiber node force

complete elliptic integral of the first kind
integrals

index in series development

modulus of elliptic integrals

pressure parameter, see Equation (9)

fiber length

nondimensional fiber length

4

2
r

1
total number of fibers crossing the meridian

number of fibers crossing unit length of meridian

bending moment
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total number of fibers

fiber number of single family per unit length

pPressure

radial coordinate

, nondimensional radial coordinate
1

l
KR

fiber tension
amplitude of elliptic integral
volume of tube
pressure-volume work

2
= R

roots of cubic expression, see Equation (12)

axial coordinate

, hondimensional axial coordinate
1

|
RN

angle between meridian and z-axis
parameter of elliptic integral of the third kind

angle between fiber and meridian

adiabatic exponent
strain

angle between rays on the tangent cone passing through
adjacent fiber nodes



@ central angle of bent tube

¥ argument of trigonometric functions in elliptic integrals
Subscripts:
\

“e 0 undeformed state !
T values at maximum radius in bent state
sy values at minimum radius in bent state
R circumferential
cew lef d

L eft woun
...R right wound



EQUILIBRIUM CONDITIONS FOR FIBER NODES

The main part of our discussion will be restricted to a
two-fiber model; that is, each fiber node represents the inter-
section of only two fibers forming a symmetric pattern of left-
running and right-running filaments. The case of a three-fiber
shell is treated in a later section. We consider an axisymmetric
structure loaded only by internal pressure and interfiber forces
(see Figures 1 and 2.)

Consider a control surface about a representative fiber node.
This surface cuts the fibers halfway between adjacent nodes. The
fibers lie at an angle, B , relative to the meridian curves on
the shell of revolution as shown in Figure 2. Then equilibrium
of forces on the control surface in the direction parallel to
the tangent to the meridian curve at the fiber node is expressed
by the equation

(T + &T) cos(ﬁ + 6B - 5_92-> ) cos(B N %)

where T is the fiber tension and 69 the angle between rays,
on the tangent cone, passing through adjacent nodes. For a
dense fiber pattern, 6T , 6B , and 68 are all small and will
be regarded as differentials. Then the above equilibrium equa-
tion becomes

0

(o]

8T cospP - T(§§ —'g%> sinf = -~ T( > sinB

\S]

a3

or 6B = cotB + 60 (1)

Now denote by 64 the length of fiber between nodes. Also let
r be the radius to the shell surface at the node measured from
the axis of revolution of the deformed shell (torus). Then §ér
represents the incremental radius between nodes, and we have
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tanB

IOo
a3 a1

(2)

With this result, Equation 1 becomes

)

8B = — cotf - tanpB

=
|o-
[a 3 Lo

This equation can be expressed in the simpler form

. 4aT :
ar (Tr sinB) = r cscp

dr (3)

Clearly the isotensoid fiber shell (T
the geodesic condition,
(Refs. 1 and 3).

= constant) corresponds to
r sinB = constant, derived previously

Now denote O to be the angle between the axis of revolution

and the tangent to the meridian curve, as shown in Figure 1.

The fiber force parallel to the z-axis at radius, r , is

n T cosB cosa

where n 1is the total number of fibers,

both right-running and
left-running,

crossing the circumference of the toroidal shell.
Then considering an annular region of the shell of radial depth,
dr , the equilibrium condition parallel to the z-axis is

d : 2T
ar (T cosp cosa) = pr (4)

where p 1is the pressure difference across the shell.

3 and 4 constitute two equations for the three unknowns
and B .

Equations

T, a,
The third equation is obtained by considering the

geometric constraint imposed by a non-sliding fiber mesh.



The initial undeformed mesh is composed of fibers in two
contrawound families. The elemental mesh configuration, then, is
a parallelogram, and the deformed elemental mesh is a parallelo-
gram having the same fiber lengths but varying diagonals. The
circumferential diagonal has length 47 r/n , and also 2 64 sinB ,
by definition of B . Here 64 is the distance between adjacent
fibers, measured along a fiber of opposite family. Equating
these two expressions yields

r cscP = %F 54 (5)

Since &4 1is constant over the surface of the cylindrical slip-
net, the geometrical constraint in the preslip deformed state is
just

T1
r cscB = o = constant (6)
where rl is the maximum shell radius and c¢ = sinBl is the
fiber angle evaluated at rl . Equation 6 replaces the geodesic
condition, r sinB = constant , that holds for the isotensoid
structure.

Utilizing Equation 6 in the form
sinf = cR (7)

where R 1is non-dimensional radius (r/rl), we can now integrate

Equation 3 immediately to obtain

2
T 1 -
2)- =
1 l -c¢c R

The angle, 0 , is now determined by integrating Equation 4.
Denoting the pressure parameter, K , as



2T pr 2

1 _
K=—"F" (9)
n Tl
and redquiring o =0 for r = rl , we find

cosa = (10)

‘/ 2 2
1 -~ R
< [ 1l - c2 - 1 K (l - RZ)]
2 2
l --c¢
from which

sina=l"R [K\[:T K—l—R)](l—csz)—cz(l—cz>

1 - c

In factored form, with x

I
o

sina = _2(1*}?2(:—27 J(x3 _ x)(l - x)(x - x2> (11)

where

Clearly both roots x2 and x3 are real. The root, x2 .

is chosen to correspond to o = T (minimum radius of torus).
The following conditions on the roots can be proven:

TYPE A: x. <x <1<x <i- if K> —=S— (13)
2 3 C2 1 c2

10
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TYPE B: x, <x<x; <1 for O<K<-——c—2 (14)
1 -c¢
This order of X, + X, X4 follows from Equation 11 so that sina
is real. Clearly in Type B xq is the maximum radius, so that
by rescaling ry o the solutions of Type B can be scaled into
those of Type A. Henceforth we consider only Type A.*
2
A formula for values of K for given X, = R, is obtained
min
from Equation 10 by setting cosa = - 1 :
2 2
2 Y1 - 7 -
K = S 1+‘/ 12 s (15)
1 -R, 1 -c R_.
min min
. 2 2
Consequently, for closed-loop toroids K > 2¥Y1l - ¢ \1 +V¥1 - .
Also, note that real values of K are obtained for any Rmin in
the range O < Rmin'i 1 . This is in contrast to the case of
toroidal isotensoids, for which c¢ = Roin = 1.

Most of the formulas above were derived subject to the mesh
constraint given by Equation 6. Since this constraint holds only
if the fibers do not slip, the range of applicability of these
formulas is determined by the condition of incipient slip. This
condition, in turn, depends on the configuration of the fibers
at the node. We shall consider two types of fiber mesh: the
mesh constructed by winding fibers continuously along the tube
and the mesh constructed by linking fibers such that any continuous
fiber alternates back and forth as it passes around the tube.
These mesh types may be regarded as degenerate cases of more
general knotted nodes.

*A third type of ordering exists for which X, < xq < 1l < x with

2 2
K<c/1l-c¢ . However, closed-loop toroids are not possible
under this condition.

11



First consider the filament-wound tube. The forces acting
in the tangent plane on a single continuous fiber (see Fig. 3)
are the fiber tension and the frictional interaction force. Let
F' denote the frictional force per unit length of fiber. Symmetry
requires that F' act in the direction perpendicular to the merid-

ian plane. Consequently
. 0 8
F'64 = (T + 8T) sin(ﬁ + 8B —-95) - T sin(B +-§5)

Again treating the incremental quantities as differentials, and
making use of Equation 2 and the geometric relationship

8r = - 64 cosB sina
we find rF' = _[g_r (Tr sinB)] CosB sinQ (16)
Utilizing Equation 3
g% = - F' tanB csca (17)
The frictional force, F' , is assumed to be proportional to

the normal force supported by the fiber, due to pressure loading.
For a fiber of length, 64 , the total fiber length for a complete
annulus is né4 . The surface area of the annulus is 2Trd84 cosp .
Hence the normal force supported per unit length of each fiber is

2Tpr cosB

n

Thus we find the limiting frictional interaction force is

P _ 4 § 27Tpr cos B (18)

lim - n

12



where £ is the friction coefficient. Recalling the definition

of K by Equation 9, the no-slip condition then results from
Equations 17 and 18 as

da /T
PRy pr-ie < ]
dR(Tl) fKR sinB csca (19)

Taken as an equality, Equation 19 serves as an equilibrium equa-
tion for the postslip analysis, replacing the no-slip mesh con-
straint, Equation 6. If the mesh has not slipped locally, the
derivative of the tension can be evaluated from Equation 8. 1In
this way, Equations 17 and 18 yield

£KR cos4B (20)

sina < 5
2c(l - ¢)

A value of one for this ratio is the condition for incipient slip.

Now consider the linked-fiber tube (see Fig. 4). The inter-
fiber node force, FN , acts in the direction perpendicular to

the meridian plane, by symmetry, and exists in this case even
for frictionless fibers. It has the value

FN = 2T sing (21)

The incremental tension, 0T , across the node is sustained by
the frictional drag between the linked fibers, proportional to

FN . Hence for incipient slip

8T = 2fT sinf (22)

where £ is the friction coefficient for the fibers. Again we
conclude that the frictionless fiber structure is an isotensoid,
and that the fiber geometry and shape of meridian curve are
identical for the frictionless filament-wound shell and the

13



frictionless linked-fiber shell. However, in the event of fiber
slippage, the frictional effects are different for these two
types of fiber shells. Equation 22 gives the increment of
tension across a single node. Let m' be the number of fibers
of both families crossing a unit length of meridian curve. Then
we find

dT

< ' i
ar < 2f m' T sinB csca (23)

where the equality is taken as the no-slip limit. In addition,
continuity of fibers requires

Y tanB (24)

Again if the mesh has not slipped locally, combining Equations 7,
23, and 24, and using Equation 8 to evaluate the derivation yields

the condition

sina < %% cosB (25)

Taken as an equality, Equation 25 is the condition for incipient
slip of the linked fiber tube. It is interesting that when the
friction limit is exceeded the fiber count, n , appears as an
independent parameter for the linked mesh, but not for the
filament-wound tube.

14



GEOMETRIC PROPERTIES OF THE PRESLIP BENDING STATE.

The simplest property of the preslip state of deformation
is a relation between filament length and central angle (i.e.
angle through which the fiber tube is bent). By geometry, we
have the relation for differential length along a fiber

dd sinB = rdoy
Utilizing Equation 6, we find

X

1

¥ = ¢ (26)

This equation restates the assumption that plane sections remain
plane under bending deformation of the original cylinder.

To apply the four constraints mentioned in the preceding
section, we need three more geometrical properties: filament
length, shape of meridian curve, and volume. Unfortunately,
these properties are all determinable as hyperelliptic integrals.
They may be expressed as integrals of Jacobian elliptic functions
depending on only two parameters, and so are easy to evaluate
numerically.* These integral formulas are derived here.

Denote the non-dimensional fiber length as

Lot
1
Then from the fiber geometry
an _ 8 q = - _csca
ar - secP csca = >

*See Reference 4 (Milne-Thomson) for tabulations of Jacobian
elliptic functions.

15



From Equation 11 we find for the length of a half-loop (x2 <x<1)

dx (27)

“ T FE I A e )

Cchanging variables to introduce the elliptic functions, we find

F (k) 2 11/2
I, l - c _jf 1l - a sn u du (28)
0

2 ke ‘[ (& - 2

sSn u

where F(k) is the complete elliptic integral of first kind, and

2
2 (l c xj3J\1 - %, 2 2/t — %5 ‘
, a° = - ¢ [—=
2
- 1 -c¢

» (29)

and sn2u = sin ¥ =
2
(l - x2>(l - C x)

If ¢ and x2 are regarded as two independent parameters,

all the others in Equations 28 and 29 are determined thereby (with

K given by Equation 15); thus L2 is given by only two free

parameters.

In a similar way, the meridian curve can be calculated.
Denoting the non-dimensional axial coordinate as

16



i

we have ' == - cota

Using Equations 10 and 11

. % u/f ‘/ia-— X [Jl _ &2 %.(1 - xq . 0)
*2 le(x - %) (1 - %) (%5 - %)

In terms of the variables defined in Equation 29 we find

l -2c¢ x2 u
__Kc‘lx (x x) 1 2 L
- 2
2 3 2 0 1 - « sn2u 2 1 - < za >sn2u 2
c X,
K(1 - x.) by 2 (1)
) f ) cn u du
- 2 1 3
2¥ -¢c) 3 2 2 ]2 o2 2 |2
] - a snu 1 - > sn u
c x,

The volume is calculated most easily by equating strain
energy to pressure-volume work. For a virtual deformation, the
pressure-volume work is



The total number of fibers over the length of the tube is n %ﬁ .

Hence the strain energy is

Here V 1is the volume of the tube, and & is the length of a

complete fiber turn (x = 1 to x = x, to™ x = 1). Hence the

Y
_ h®
v-6Trp deL
0

Note that this formula is not limited to the friction-loaded
slip-net. Thus for the frictionless isotensoid tube, we have

the formula

tube volume is given by

V=——FS5" (32)

For the friction-loaded fiber tube, the result is not so simple.
By geometry

dt = - dr secB csca

Then from Equations 7, 8, 9, and 11, we have

20 r3
1 2.2 dx
vV = > c4 (1L - c) J/. 3 (33)

3K -
X, <l—2 - x>2 {x(x - %) (1 - %) (%, - %)




Again converting to the Jacobian elliptic-function notation
defined in Equation 29, we have

3
agr> 2.2 | E(k) 2 o 372
1 (L - c9) : (L -~ o sn u) :
vV=—; g 2 172 da (34)
3ke (1 - ¢ %) Jx3(x3-x2) 5 l_<_2a_> 2y
[ X

2

The principal gquantity of interest is the applied bending
moment that produces the given deformation. This moment is
readily formulated from the fiber tension and pressure loading
on a given meridian plane, representing the end of our deformed
cylinder. However, it is simpler and, as it turns out, numerically
more accurate, to apply the energy principle. This method is
valid for the preslip condition, but does not account for fric-
tional energy loss during the postslip phase. Equating the work
done by the applied moment to the pressure-volume work done on
the pressurizing gas¥*, we have

av

- X (35)

*The fibers have been regarded as inextensible and thus do not
absorb any of the energy.

19



ASYMPTOTIC SOLUTION FOR SMALL DEFORMATION

The formulas derived in the foregoing section constitute a
non-linear theory for large deformations. However, no explicit
solutions are obtained, but instead a tedious iteration proce-
dure involving numerical, analog, or graphical integration is
required for solution. To obtain simple analytical results, we
turn to the method of series expansion to generate an explicit
solution valid for small deformations. Numerical results for
large deformations are presented in a later section.

From the definition of K , the initial undeformed cylinder
corresponds to K + = (rl-—-w). Thus, we see that an expansion

in powers of 1/K is appropriate. We shall later replace K
as expansion variable by the more useful bending moment, M .
Since all the integrals of the preceding section involve the

roots, x2 and x3 , let us first seek an expansion for these

roots. From Equation 12 we see that a radical must be expanded,
as follows:

1
2 12 2 4 6
[l + 8c 2] -1 + 4c _ 8c + 32c -
KJl - c K‘h - c K'(1 - ¢) 3 5 5
K (1 ~c)
_ l6Oc8
K31 - &%)2
Substituting this expansion in Equation 12 yields
2 4 6
X, = 1l - % 1l - ¢ + 4c2 - 316C ) + =z 80c St .. (36)
K K V& - c K (1 - ¢)
1 402 16c4 8006
*¥3 7 72~ 2+3{ 2" 4 2.t (37)
c K K'Yl - c K (1 - ¢)

20
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Now, since x2”§ x <1, from Equation 36 we find

1
l - x = O(K)

so that our functions of x can be expanded in powers of (1 - x)
as well as powers of (1/K) . Thus, for example,

xF 2 [1 - (l—-x)]_%=l+%(l—x) +%(1-x)2+1—2(1-x)3
+ 0(1—4) (38)
K

l X
2 x -1

- = (x, - 1)7F [1+(—l —

=

2
3[1 -x 5 (1 -x
e A el R v B

and the terms in (x, - 1) are expandable using the series of

3
Equation 37.

Let us now evaluate z(x2) , which is needed to establish the

condition for a closed-loop meridian curve. Equation 30 can be
rewritten in terms of two integrals as

Z(x2) = %\E - c2 Il - %-12 (40)
o/ E

V&(x - X )(l - x)(x3 - X)

where dx (41)

21



_ c
and I, = f (% - %) (0 = ) dx (42)

To evaluate these integrals, we make use of series expansions
of the type given in Equations 38 and 39, thus obtaining for I ,
the series of integrals

] l - 2 (1 - X)j
Il B c - 1) l E: ./r ‘fi - x)(x - x.) o
2

where the A, are constants to be given below. The integrals,

I(J) , are evaluated easily; make the substitution
sin2¢ = i
1 - X,
1 .
. J . /2 :
- 2
Then I(J) =~/r (1 - x) dx = 2(1 - xz)j J/U cos ¥ a
. ‘Rl - x)(x - x2)
2 0
Ny J
(23): ™(1 - x,)

- . (43)
223 (512

Hence Y11 J
H i | (2;?.(1 _ x2) (aa)
"3 3—0 REPCIR

22
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Similarly

N =]

12=

R (25 + 2): (1 - x )77t
i —cl l E: Aj_m2j+2 : 3 (45)
3 j =0 2 [(j + l).]

By carrying out the series expansions for the integrands in
Equations 41 and 42 as discussed above, the Aj are found as

the following series, which make the expansions for Il and 12

accurate at least to order (l/K4) .

AO =1
4
A, = %-[1 - = de S e
K'(1 - ¢7)
a _§+c_6 3¢ -1
- 2 2 . e o
2 8 K% (1 - )3
5
= T ces 46
By " Te (46)
The condition for a closed-loop meridian curve is z(xz).= o,
or from Equation 40
K

(47)

I, =—F=1
1 5 h _ C2 2

To evaluate the conditions required by this equation, the terms

(1 - x2)J must be expanded in powers of (1/K) . We obtain

23



[o0] L} 1 — j
:E: (23): (1 - %)) 1 3 9 - 13c°
A- 2j 2 = l + I_<- l - C + "'2""'— —
s Zo0 7 27GH ax
25 - 93¢ + 127¢+ - 750° .
2 * o o
4K3(l - C )3/2

(25 + 2)! (L - x

o 3 22j+2[(j + 1):]2

j+1
2)

IIthS

2 2 3 - 5c2
=X 1l -c¢ 1+ 5
2KFJ1 - c

6

15 - 42c2 + 43c4 175 - 705c2 + 1005c4 - 891c

+ > > + 3 2 3/2 + ...1(48)
4K (1 - ¢ ) 16K (1 - ¢ )

Substituting Equation 48 into 47 and collecting like terms in
(1/K) , we find

1 - 3c2 3 - lOc2 + 15c4 75 - 332c2 + 497c4 - 59lc6
> + 5 > + 3 2.3/2 + ... =0
2K‘h - c 2K (1 - <) 16K (1 - ¢)
. 2 .
Solving for c from the leading term .
2 4 2 4 6
2 - - -
3 10c + 15c¢c - 75 332¢  + 497¢ - 59lc + (49)

1
C = — + e e
3 3K#l - c2 24K2(l - c2)

. . 2 . .
This equation can be solved for c¢ as an expansion in (1/K) by
iteration; thus from the first term

e
_3 L



Substituting this result into the leading two terms on the right
side of Equation 49 yields

cz—-l+(2 +
_3 * a0

/
3)3 2

® -

Substituting this into the leading three terms on the right of
Equation 49

3/2
+—l-1--l—2+ (50)
K

2 1 2
=1+ (3)

==

144

The leading term in Equation 50, c2 = 1/3 , is identified
as the solution for the circular cylinder, which is the undeformed
initial state. The second term, then, represents the first order
effect of bending. The inverse of Equation 50 is

- ()7 (1) 36)

We are now in a position to evaluate all the properties of
the deformed state by series expansion. The filament length for
a half-turn is given by Equation 27. Carrying out the expansion
of the integrand yields

9/2 2

W+

2 : 2
L, = oV '_cllx(o) -2 =L ;) '+;—K1(2) +o(1—4)
3 2K(l - ¢ ) K
Substituting the above expansions for c¢ , x2 , and x3 , we find
L2=%[l—-—l-2-+...] (51)
2K



With this result we find

K4
4 2 1
r =—=— |1+ —7 + ... (52)
™
1 L [ 2K2 }
and from Equation 26
™ 2 c 1 23 1
®, = cL, = —/— [l + (—) S - =+ ... ] (53)
2
2 2 JSK 3 K 32 K

The volume is evaluated in a similar way, beginning with
Equation 33. Expanding the integrand as above, we find

1(2) +...

o|un

3
20 r 2 2
v = 1 }l - C I(O) _ 1 3c 14 1 I(l) +
2 x3 - 1

3kc Yx, - 1 L o2

4
where the error term is of order (1/K) . Note that the coeffi-
(2)

. 2
cient of I has been evaluated at ¢ = 1/3 , Xy = 3.

Substituting for the I(j) from Equation 43 and carrying out
the remaining expansions, we find

3
29 r 5
1 2 1 1
v = 2[1-()K- 2+...] (54)

3
1 181 1
3 [1 ~ 96 2T ]

26



However, rl is not constant during bending; substituting from

Equation 52 yields

3
24
v, = 2 1 - %%'li + ... (55)
 343T K

Note that the first term is just the volume of the undeformed
cylinder.

The applied bending moment can be found from Equation 35.
To first order, Me«® and p= constant. Hence

%MCP=—pAV (56)

Substituting from Equation 53 and 55, we find the bending-
stiffness formula for small deformations in terms of the tube
diameter, d , and length, b , of the initially undeformed
cylinder

no - 3 (‘p—g> (57)
Po Vo 324f2m
Finally the slip condition, F = Flim , given by Equation 20
can be evaluated more simply for small deformations. Substituting
2
our expansions for ¢ and Xy we find
F 3 1
~— =2 = - -
<F _ >KM, £ oyl W (x - x) (58)
lim 245

1
The function [(l - x)(x - x2)l2 has its maximum at
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X =3 (1 + x2)

The value of this maximum is

l - x
5 2 2 2 2!2
- — = —— T — - o~
[(l x) (x x2) 7 e Vl c

max. 2 K= o
3K

The incipient-slip condition is F/F i 1 ; thus we find from

Equation 58 for small £ (large K )

v
= f (59)

Kslip

Substituting this result into Equation 53, we find for the bending
angle for incipient slip

£
() g15p = 73 (60)
and for the bending moment
3 3
Msli = ——éz—a'f P Lz = 37 fpd (61)
P 72431

384v5

All these formulas may be regarded as the leading term in a series
expansion in powers of the friction coefficient, £ . From this
point of view, a value of about 1/2 is as large as may be
allowed for validity of these formulas for incipient slip. The

corresponding bending angle is @2 = 30° . It is interesting to

note that slip first occurs at the mean radius (for small £ ),
forming an annulus over which the geometric mesh constraint,
Equation 6, no longer holds.

28



SLIP CONDITION FOR A THREE-FIBER FILAMENT-WOUND CYLINDER

The foregoing analysis treated the case of a two-fiber pres-
sure vessel, for which bending deformation was allowed by kine-
matic shear of the elementary mesh pattern, the stiffness being
provided by pressure-volume work. If in addition to these two
helically wound fibers, a third family of parallel circles is
added, the fiber pattern becomes a structure (so long as start-
ing friction is not exceeded) which will not deform if the fibers
are inextensible. The pressure now serves to prevent buckling.

We now resort to membrane theory to calculate the stress
resultants, since the shape of the three-fiber cylindrical shell
is known a priori. From Flugge (Ref. 5) the solution of the
equilibrium equations for a circular cylinder is

~la
\\%/ - Ncp = pa (62)
® Z
b A = £, (9) 63)
% Ve T 1 1 |
Z -]
T N.-_'_ N, = - (':-) f'l (@) + £, (¥) (64)

where the notation is indicated in the sketch. We see that

f2(¢) is Jjust NZ at z = 0 . Henee
[~ ] =-(—1-°-)f'(cp)+[N]
Z z=b a 1 z2" 2=0
By symmetry of the problem, we set [N ] = [N _] , OT
2" z=h Z =0

£ (9) =0
Hence ' N = f£f. = constant

Ze 1
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and N, = £, (p) = [Nz]z=o

Note that Nzw constant implies torsion. Hence we set

Now consider the tension in the fibers. Let né be the

number of fibers per unit length, along =z , of the parallel-
circle fibers, and ni and né those of the left- and right-

running helically wrapped fibers. For a symmetric pattern,

n£ = né . Then from the geometry of the mesh pattern, we have

the following local equilibrium conditions. For equilibrium in
the z~direction

TR
N =0
Pz
T Nch~0
N
z
2nR TR COsSB = NZ tang (65)

and in the direction normal to TR

n; TC cosB = Ncp cosg - NZ sing tang (66)
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Also by symmetry, TL = TR . Note that B as used here is the

complement of B8 as used in the preceding two-fiber analysis,
because thée coordinate system is defined differently.

Now let us require that the tensile stress resultant in the
shell vary as cosine ¢ ; then from overall equilibrium of the
cylindrical shell

N = pa 67
) p (67)

N =% pa+B co (68)
z 5 P cosy

where B is a constant to be determined from the applied moment.
Then the fiber tension is

'm_ = n' T =+ pa sech tanf + 2 tanp B (69)
nL L - TR =32 P ecg tang > anf secB cos®

1 2 — 2
né TC = pa (1 - E'tan B) — B tan” B cosyp (70)

The frictional force on the fibers is determined readily.
Since the three-fiber winding pattern is undeformed in the pre-
slip loading condition, the fibers have no geodesic curvature.
As a result, the frictional forces are parallel to the fibers.
They are determined by considering equilibrium parallel to the
fibers:

or, with d? = a csc B dyp , we have

p F =‘l sinp ———— (71)
a
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' Hence from Equations 69 and 70

B 2 .
FC = s tan” B siny (72)
c .
B 2 .
FL = FR = - 2n£a tan B singy (73)

The frictional starting force should be proportional to the
normal force between overlying fibers. An element of area,
a(dz) (dy) , supports the pressure load, pa dzdy , while the fibers
support a radial pressure load, (né Tc/a) , for the parallel cir-

cles and (nL TL sinB/a) for each family of helical fibers. (This

may be confirmed by summing the formulas (65) and (66) for the
tensions, TC and TL). The total length of fiber per unit area

L
helices. Hence the normal force per unit length sustained by

is just né for the parallel circles and n! cscB for the

each fiber is (Tc/a), (TL/a) sin2 8 , and (TR/a) sin2 B .

Thus for the starting friction on the outer, right-running layer,

we have
F]
R
[ Jlim

.2
f(TR/a) sin™ B

(74)

A(_L£ )|p2 = 2 =
> <n£a>[2 + B coscp] sinB tan B

where we have assumed the helical wrap to be outermost. As a
special case, put tan? B = 2 (or ¢2 = 1/3). Then T, = 0 for

B = 0 , and Equation 74 reduces to the two-fiber result given by
Equation 18. For the three-fiber mesh, Equations 73 and 74 yield

B cscB sin
Fo /Py = -7 B s1no (75)
lim f(E pa + B cosyp)

32



For small £ , B is small also, and so for F_ = (F.)..
R R 1lim

|

leip = E'f pa sinF (76)

for the starting-slip condition on the outer helical fiber layer.

The bending moment is now calculated from the axial stress
resultant given by Equation 68:

21 21

M = azJ/. N, cose dp = azjf t% pa + B cos®)cosy do
(o) o

Carrying out the integration and substituting for B from
Equation 76, we find the limiting bending moment without fiber
slippage:

3
=~ f pa” sinB (77)

Again evaluating the two-fiber limit by setting sin2§ = 2/3 , we
find that Equation 77 yields a value about twice that given by
Equation 61l. The discrepancy is accounted for by recalling that
Equation 77 was derived for a non-deforming mesh, as required for
a three-fiber pattern, whereas Equation 61 is based on a deform-
ing two-fiber mesh, including volume change. Note from Equations
50 and 53 that ¢ increases with bending, corresponding to B
decreasing, thus reducing the value of Equation 77 in the two-
fiber limit. With the third family of parallel-circle fibers,

the winding angle of the helical fibers will have a higher advance
ratio, since the helices support the full pressure load on the end
caps, but not along the length of the cylinder.
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THE POSTSLIP PHASE

The results of the small deformation analysis for two-fiber
tubes showed that fiber slippage occurs over an annular region
about the mid-radius of the deformed tube. This annular slip
region is, of course, bounded by two regions in which slip has
not vet occurred, one at the outer radius and one at the inner
radius. Consequently, the equations already developed for the
preslip phase hold locally in the two no-slip regions for the
postslip phase. However, the equilibrium equations for the slip
region cannot be reduced to the same degree of simplicity as for
the no-slip region. In particular, the solution for the shape of
the meridian curve involves simultaneous integration of first-
order differential equations for =z, p, and T . These equations
are derived readily from Equation 3 and either Equation 19 for
the filament-wound tube or Equation 23 for the linked-fiber tube.
These integral curves must satisfy appropriate matching conditions
at the juncture with the no-slip region.

The resulting equations for the filament-wound tube are
listed below:

%g = - cota (78)
d f KR coszs sing
ar (sing) = (T . - R (79)
T—>s1na
1
a (T \_£f£KRsing (80)
drR Tl sing

The fourth unknown, o , is obtained by direct integration of
Egquation 4, which holds over both preslip and postslip regions.
The result is

1 - c2 - % K (1 - R2)
cosqg = - (81)

<T—> cosB
1
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A set of equations very similar to Equations 78 through 81 holds
for the linked-fiber tube.

In addition to the equations given above, integrals for
fiber length, bending angle, and tube volume are formulated as
for the preslip bending state. However, the energy method used
there to determine the bending moment no longer applies because
energy is lost in fiber slippage. Instead, a direct integration
of the moment contributions of fiber tension and pressure can be
used:

a_ M\_ 1l _E_) sing tang
dR< 3>_ 2(1 - R®) [K(Tl R sina Z] (82)

To assess the qualitative effects of fiber slippage, consider
the case of frictionless fibers. In the limit, £f—= 0 , Equation

80 yields T = T1 , and Equation 79 yields R sinp = constant.

These are just the conditions for isotensoid fiber shells. 1In
Reference 1 it was shown that the integrals for the meridian curve,
z(R) , fiber length, L , angle, ®» , and volume, V , could be eval-
uated for the isotensoid shell in terms of elliptic integrals.

For a torus, each of these elliptic-integral expressions can be
expanded in a series of powers of the modulus, k , given by

2 1%
ko= 1l - x
3

where x, and x, are roots of sing = 0 , given by an equation

similar to Equation 12. The development of these series expan-
sions is guite similar to that carried out in a previous section.
The pertinent results are as follows:

2 1.6 1 .8 57 .10
x,=1l-k -gk -T5k 1024 Foe
1.4 1 .6 57 .8
x3 =-3 ko - 16 k 1024 k™ + ...



1
c = ——
3

RE

B
-
I
e L]
~
N
|
N
w
w
N
+
N

T ;k2+ik4 101 .6

+
‘4‘[5 2 256
2r
.
2 eay2

_m g3 V.2 1.4 51 .6
L2—4J2 §k +5 kK + 52k +2

3

6 3.8 215 .10
; k™ + 4 k™ + 556 k + ...%

The constant, rl , is not invariant with deformation of the tube.

Eliminating it in favor of the invariant, Lz = L2 r, . we have

v
+ L k4 + ...

2 2 g
= 1
L23 3 ,3ﬂ 128

or in terms of the angle, mz

7 2
=1+ > mz + ...

0 4

<|<

where V0 is the volume of the undeformed tube. Now from

Equation 35

M=-pv _@_(1)
0 dwz VO
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which yields M _ 7

— v ———-2 cp2+...

Py Yo 2
It is interesting, and exasperating, that terms to order k10 in
the series for x, were necessary to retain only the leading term

in the series for the bending moment. For a tube of diameter, 4,
length b,

P
qg=2Y2, _2v2, T2
T 2 T @
Thus A 7 ,%pd 2
T=l+§(b) + ... (83)
0
M 7 d
v =—_—‘(S°—)+--- (84)
P Yo 4 V2w

The negative sign in Equation 84 corresponds to a restraining
moment, implying that the frictionless fiber tube is unstable.
This fact is also clear from Equation 83 which states that the
volume of the tube increases quadratically with bending moment.
It is now evident that the two-fiber tube is stabilized only by
frictional effects.

Figure 5 shows a plot of Equation 83, together with computed
points for a three-fiber frictionless tube having one meridian-
wrapped family of fibers (B = 0) and two symmetric families of
fibers (B = + 45°). The density of the meridian-wrapped fibers
is V2 times that of each of the skewed fibers, to satisfy equil-
ibrium with the pressure on the endcaps. The calculations for
the three-fiber tube were carried out in the manner described in
Reference 6. From the figure it would seem that the third fiber
has no significant effect on the stability of the frictionless
tube, at least for the fiber angle chosen. The stabilizing effect
of the third fiber that was observed experimentally in Reference 3
is associated with a "pinch effect" in which the bent tube departs
from toroidal symmetry. The present analysis, however, does not
account for this mode of deformation.
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From these results, we conclude that the stable bending condi-
tions derived for small deformations in a previous section come
about solely due to friction, and when the frictional limits are
exceeded, significant reduction of the bending moment can occur.
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NUMERICAL RESULTS FOR THE TWC--FIBER TUBE

In addition to the small-deformation analysis carried out
previously, numerical results have been obtained for large
deformations by solving the complete equations developed in an
earlier section by finite differences. The numerical integration
procedure used was the fourth order Runge-Kutta scheme, and the
calculations were carried out using an IBM 7094 digital computer.
The numerical results were found to be quite sensitive to step
size, as determined by comparison with the analytical results for
large K and c¢ near 1/+3 . Satisfactory accuracy was

obtained by use of 100 steps over the range, 0 < ¢.5'§ , where

! 1is defined by Equation 29 for the preslip condition. With
this choice the meridian curve, Z(R) , is accurate to six sig-
nificant figures. This degree of accuracy on Z resulted in
only 3 or 4 figure accuracy on the value of K required for a
closed-loop torus.

Torus solutions were found as follows. Meridian curves were
generated by integrating from o =0 (R = 1) to a =7 (R = R2)

for various values of K , with ¢ fixed, until two values of K

are determined for which Z2 has opposite sign. This interval of

K 1is repeatedly halved until 2 is reduced in magnitude to the

2

desired value (10_7). Figure 6 shows typical variations of 22

with K for the no-slip condition. The no-slip curve has one zero,
vielding torus conditions. The shape of the curve is such that
iteration by linear interpolation is exceedingly slow after bracket-
ing the root, and does not work at all before the root is bracketed.
On the other hand, the interval-halving technique is quite effective.
Note the sensitivity of K +to slight changes of 22 indicated in
the figure.

The results of most interest are the moment-deformation char-
acteristics of the tube. The two solid curves in Figure 7 show
bending moment versus bending angle for the no-slip condition as
obtained by the numerical integration procedure described above.
The dashed line denoted "linear theory" results from Equation 57.
The curve labelled "adiabatic" represents the situation in which
the gas in the tube is compressed without heat or mass transfer
from the tube; the curve labelled "isobaric" represents the
situation in which the tube is connected to a large reservoir
so that the pressure remains constant during bending. The iso-
thermal process would produce a curve lying between the isobaric
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and adiabatic curves. The bending moment is observed to rise al-
most linearly up to a value of 0.8 for the reduced bending angle,

© d4/b , followed by a significantly reduced bending stiffness.

The knee in the curve is especially evident for the constant-
pressure case. A further break in the curve with reduced stiff-
ness would be expected when fiber slippage occurs. The linear
variation holds over a remarkably large range of bending, as can
be seen by taking an example. For a tube with a length-to-diameter
ratio of four, the knee of the curve corresponds to a bending angle
of 3.2 radians. In other words, the tube can be bent into a U-
shape with a linear bending moment graph.

From Equation 8 as well as Equation 80 it is seen that the
maximum value of fiber tension over the tube occurs at maximum
radius. Figure 8 shows the variation of this maximum fiber ten-
sion with bending angle for no fiber slippage. With constant
pressure, the tension is seen to peak at a value about 30 percent
greater than the tension in the undeformed tube, with the peak
occurring at the approximate knee of the bending moment curve of
Figure 7. 1In contrast, the maximum fiber tension in the tube
continues to rise rapidly with bending angle for the adiabatic
case, owing to the strongly increasing pressure in the tube.

The results discussed above are restricted to a fiber mesh
without slippage. Conditions for incipient slippage of the fila-
ment-wound tube are given by Equation 20, which has been evaluated
using the results of the numerical integration. These conditions
are shown in Figure 9. Clearly a friction coefficient of unity
is sufficiently large to prevent slippage over the full range of
bending angle considered here. For the linked-fiber tube, the
incipient-slip conditions are determined by Equation 25. For
small bending deformation, this equation can be expressed as
P2
m

f =vV6

where m is the number of fibers crossing a meridian curve of
the tube. Comparing with Equation 60, we see that the linked-
fiber net is less subject to slippage than the filament-wound

shell, if m >'JE'§ . This number of fibers will be greatly

exceeded in technical applications.
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Figure 3. Forces Acting in Tangent Plane on Wound Fiber
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